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Abstract

Teleoperated robotic surgical systems such as daVinci are widely used for laparo-

scopic surgeries. The currently available daVinci system does not provide haptic

feedback. Prior research has shown that the addition of haptic feedback improves

surgeons’ performance during minimally invasive surgeries. Other authors have im-

plemented haptic feedback in the daVinci robot by placing sensors on the surgical

tools, using visual force estimation, and measuring proximal guide wire forces. How-

ever, issues with biocompatibility, time delay, low accuracy, and repeatability make

them impractical for clinical use. In this work, two strain gauge force-sensing devices

were created for the patient side manipulator of the daVinci surgical robot. These de-

vices were designed to be easily added to the existing system. The device mounted on

the cannula measures the X-Y components of the forces applied to the tool, and the

device mounted on the sterile adapter measures the Z-component of the force. These

devices are used for the real-time force feedback in the daVinci robot. The proposed

system has high sensitivity and resolution, matches the required force measurement

range, and has high signal-to-noise ratio, which implies high signal quality. However,

iii



the absolute errors of the currently built devices are high due to the manufacturing

techniques used on the prototype that could be improved upon for a deployed device.

This work demonstrates fast 3-DOF force measurements on the daVinci robot with-

out any robot or instrument modifications. While the present system has significant

systematic errors, these can be mitigated by altering the mechanical design to reduce

hysteresis and improve the accuracy of the system.
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Chapter 1

Introduction

The daVinci surgical system is a robotic platform that enhances surgeons per-

formance in minimally invasive surgeries by enabling highly precise translation of

surgeon’s hand movements to the instrument’s movements.

The currently available daVinci surgery system has a laparoscopic camera, pro-

viding visual feedback to guide doctors during surgery. However, the system does not

have any kinesthetic or cutaneous feedback, known as haptics [1].

During open surgeries, doctors usually get haptic feedback directly or through the

surgical tools. In minimally invasive surgeries interaction with patients via long shafts

leads to the loss of some force and tactile sense. In robotic surgery systems, surgeons

have to manipulate robots indirectly, which eliminates all haptic feedback [2].

Several studies [3–5] have proved that the addition of haptic feedback in the

daVinci surgery robot will help to reduce the amount of surgical errors and intra-
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operative injuries, which will lead to faster post-surgery recovery time and decreased

rate of unsuccessful surgeries [2, 6, 7].

There are many technical challenges to overcome in order to implement the haptic

feedback in the daVinci robot. One of them is getting accurate force readings from

the patient side manipulator (PSM). To address this issue, we are trying to create

force-sensing device, that can be easily added to the existing surgery system.
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Chapter 2

Background

2.1 Teleoperated Surgical Robots

Recently, robots have started to be extensively used for surgical procedures. They

allow doctors to perform these procedures with high accuracy, repeatability, and re-

liability, which in turn results in reducing operation time, errors and post-operation

injuries. Minimally invasive surgeries are beneficial for accurate procedures with

minimal access to operated organs, e.g. neurosurgery, eye surgery, cardiac surgery,

intravascular surgeries and etc. Use of robots in minimally invasive procedures im-

proves precision and reliability of surgical maneuvers [8].

Russel H. Taylor suggested classification of medical robotic systems into two cate-

gories: surgical Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM)

systems and surgical assistants [9].
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Surgical CAD/CAM systems are involved into the process of preoperative, intra-

operative and postoperative planning, including building a patient model, registration

of medical images, and monitoring of the therapy. Examples of CAD/CAM robots

are ROBODOC and CASPAR systems for joint replacement surgery, LARS and JHU

robots for positioning of needle guides, and systems such as Accuray Cyberknife for

positioning of the radiation therapy delivery device [9].

Surgical assistants are medical robotic systems that work in cooperation with sur-

geons. They are divided into two classes: surgical extenders and auxiliary surgical

supports. Surgical extenders are operated directly by the surgeon and are used to ex-

tend the surgeon’s ability in performing an operation. Examples include master-slave

manipulator systems (e.g. the daVinci system, Sensei X, Senhance) and teleoperated

microsurgery systems designed for ocular microsurgery. Auxiliary surgical supports

usually work side-by-side with the surgeon and perform such functions as laparoscopic

camera manipulation and ultrasound probe manipulation [9].

Use of teleoperated robots in surgeries can solve many of the conventional surgery

problems in terms of more precise manipulation capability, ergonomics, dexterity, and

haptic feedback capability for the surgeon. They enhance dexterity by increasing in-

strument degrees of freedom, compensation for hand tremor, and scaling movements

to transform large movements of the control grips into small motions inside the pa-

tient. Three dimensional view with depth perception gives surgeons ability to directly

control a stable visual field with increased magnification and maneuverability. All of
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these can extend the surgeon’s ability to treat patients [8].

Today, many surgical robotic systems have been commercially developed and ap-

proved by the FDA, such as the daVinci surgical system (Intuitive Surgical, Inc.,

Sunnyvale, CA) (Figure 2.1), the Sensei X robotic catheter system (Hansen Med-

ical Inc., Mountain View, CA), the FreeHand v1.2 (FreeHand 2010 Ltd., Cardi↵,

UK), the Invendoscopy E200 system (Invendo Medical GmbH, Germany), the Flex

robotic system (Medrobotics Corp., Raynham, MA), the Senhance (TransEnterix,

Morrisville, NC) (Figure 2.2), the Auris robotic endoscopy system (ARES; Auris

Surgical Robotics, Silicon Valley, CA, USA), and the NeoGuide Endoscopy System

(NeoGuide Endoscopy System Inc, Los Gatos, CA) [10,11].

Figure 2.1: The daVinci Si Surgical System [1]

There is also a number of NON-FDA-approved platforms that are currently under

development or going through clinical trials. Examples include MiroSurge (RMC,

DLR, German Aerospace Center, Oberpfa↵enhofen-Weling), the ViaCath system

(BIOTRONIK, Berlin, Germany), SPORT surgical system (Titan Medical Inc., Toronto,
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Ontario), the SurgiBot (TransEnterix, Morrisville, NC), the Versius Robotic System

(Cambridge Medical Robotics Ltd., Cambridge, UK), MASTER (Nanyang Technolog-

ical University and National University Health System), Verb Surgical (Verb Surgical

Inc., J & J/Alphabet, Mountain View, CA, USA), Miniature in vivo robot (MIVR)

(MIVR, Virtual Incision, CAST, University of Nebraska Medical Center, Omaha,

Nebraska, USA), and the Einstein surgical robot (Medtronic, Minneapolis, MN) [11].

Figure 2.2: The Senhance Surgical System [12]

The daVinci surgical system is one of the most commonly used robotic surgical

systems. In 2015, over 3400 systems were in use around the world. More than 3

million surgeries were performed worldwide using daVinci system [1]. The system

has been approved for various types of surgeries such as cardiac, colorectal, thoracic,

urological and gynecologic. However, new systems are emerging on the market, pro-

viding features that are absent currently in the daVinci System. For example, the

Flex Robotic System, which consists of the flexible endoscope for laparoendoscopic

6



surgeries. This system is able to define a non-linear path to surgical target by advanc-

ing a flexible telescopic inner-outer mechanism with instruments inside it, whereas

instruments in the daVinci system can follow only non-flexible straight path. Another

example is the Senhance robotic platform, which was cleared by the FDA in 2017,

that provides actual haptic force feedback, allowing the surgeon to feel forces gener-

ated at the instruments end. In addition, the system uses eye-tracking technology

to move the camera at the point the surgeon is looking at, while the daVinci uses a

footswitch panel to control the camera movement [11].

2.2 Importance of Haptic Feedback

Haptic feedback is assumed to improve surgeons’ performance in robot-assisted

surgeries. Several research groups tried to examine the e↵ect of the haptic feedback on

surgeons’ performance in tasks including the knot tying, blunt dissection, laparoscopic

cholecystectomy, and mitral valve annuloplasty repair. To assess the performance they

analyzed the required time to complete surgical tasks, the peak and the mean forces

applied on tissues, and rates of suture breakage.

As reported in [7], research groups [13–16] compared robotically assisted (no hap-

tic feedback) and traditionally performed laparoscopic (has some degree of haptic

feedback) surgeries in terms of required operative time and post-operative injuries

rate. Meijden et al. concluded that in di↵erent types of robot-assisted surgeries the

7



absence of haptic feedback prolonged operative times and increased the risk of sur-

gical errors [7]. However, there are other factors, such as surgeon experience in use

of traditional laparoscopic instruments, that could explained the change in operative

times.

Figure 2.3: E↵ects of Visual Force Feedback on Robot-Assisted Surgical Task Perfor-
mance [6]

In two studies, [6, 17] knot tying tasks were performed by surgeons to assess the

influence of the haptic feedback. Bethea et al. reported significantly more consistent

tensions applied to suture materials, without breakage, during tying with visual haptic

feedback compared to without the feedback [17]. Reiley et al. implemented real time

visual force feedback in the daVinci robotic system and asked two groups of surgeons
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(with and without robotic experience) to tie 10 knots with and without force feedback

[6] .The performance parameters they used were suture breakage rate, secureness of

the knots, peak and standard deviation of applied forces, and completion times. They

concluded that use of the visual force feedback resulted in lower suture breakage

rates and peak forces, and decreased force inconsistencies among surgeons without

robotic experience (Figure 2.3). However, among experienced daVinci surgeons it

did not show any changes in performance parameters. The authors suggested that

visual force feedback benefits only inexperienced robot-assisted surgeons. One of

the issues with the visual force feedback (used in both studies) that it does not give

much information (only color changes) about forces applied by the instruments, which

diminishes haptics benefits. The di↵erence between results of these two studies could

be because in [17] the authors did not consider surgeon’s experience.

Wagner et al. examined the e↵ect of force feedback during performance of the

blunt dissection task, which makes up 25-30% of the time spent on most surgeries [3].

The results of the study demonstrated that without force feedback the average force

applied to the tissue increased by at least 50%, peak forces doubled and number of

errors that caused tissue damage increased by over a factor of 3 (Figure 2.4). The

study also shows that these results are independent of surgeons’ previous experience.

Also, study have shown that the rate and precision of dissection were not significantly

improved with force feedback. In contrast to two previous studies, which used visual

force feedback, authors used Phantom haptic interface device as the surgeon master

9



(a) Average peak force applied versus
force feedback gain

(b) Average RMS force applied versus
force feedback gain

(c) Average number of errors versus
force feedback gain

Figure 2.4: Examination of Blunt Dissection with/without Force Feedback [3]

controller, which could explain significant changes in the study results.

Yiasemidou et al. assessed the role of haptic feedback by evaluating performance

of surgical trainees after simulation training [4]. They were divided in two groups and

performed full procedure of laparoscopic cholecystectomy using virtual reality simula-

tors with and without haptic feedback. The results shown that use of simulators with

haptic feedback significantly reduced the time required to complete the procedure.

Currie et al. developed robotic-assisted surgical system that provides visual and

direct force feedback during cardiac surgery [5]. The system measured the amount

of force applied to cardiac tissue during mitral valve annuloplasty repair. The study

10



results have shown that the addition of both visual and direct force feedback (2.15±

1.08) causes lower peak force applied to mitral valve tissue compared to no force

feedback (3.34 ± 1.93N ;P < 0.05). In this study, authors also compared applied

peak forces with only visual force feedback (2.16 ± 1.67) and with only direct force

feedback (1.62 ± 0.86). Also, comparison between the performance of experts and

students (with no experience in robotics-assisted surgery) have shown no statistically

significant di↵erences between the groups. The methodology of this study has been

significantly improved in comparison to [17]. The authors of this study [5] used haptic

devices to provide direct haptic feedback and used two study groups.

Meli et al. evaluated participants’ performance on a bimanual teleoperation ex-

periment called the peg board experiment [18]. The authors used three feedback

conditions: cutaneous force feedback, complete haptic feedback provided by Omega 7

haptic interface, and auditory feedback provided by changing the repetition frequency

of beep tone. They evaluated the performance in each feedback condition by com-

paring task completion time, the contact forces and total displacement of the rings.

The comparison of these types of feedback have shown that haptic force feedback

has smallest completion time, contact forces and displacement (Figure 2.5(a)). The

authors also studied influence of unstable behavior of the haptic feedback by adding

communication delay of 20 ms between master and slave system. The results of this

study demonstrated that for the haptic force feedback all the parameters significantly

increased, showing that just cutaneous force feedback allows the best performance in

11



(a) No communication delay

(b) With communication delay of 20 ms

Figure 2.5: Bimanual Peg Board Experiment Results. Completion time, contact
forces, and rings’ displacement for the haptic (H), cutaneous (C) and auditive (A)
conditions [18].

unstable conditions (Figure 2.5(b)). The authors concluded that use of the cutaneous

feedback only can be more beneficial than use of full haptic feedback. However, a

stable haptic feedback system without time delays could show higher performance,

meaning that it is important to create stable haptic system.

The results of the studies [3–5] have shown that implementation of force feedback

into teleoperated robotic systems reduces root-mean-square (RMS) and peak values

12



of contact forces, energy consumption, a time required for task completion and the

surgical errors rate [8]. The current version of daVinci robot does not provide haptic

feedback, and an addition of one would be beneficial for both patients and surgeons.

2.3 Current Approaches

In order to implement haptic feedback in the daVinci system, it is necessary to

create force sensing method for surgical tools first. Current approaches of incorpo-

rating force sensing include placement of force sensors on surgical tools, change of

instruments design and some sensorless methods.

2.3.1 Sensor Placement on Instrument

Hong et al. suggested measuring pulling and grasping forces at the tip of the

surgical instrument by mounting strain gauges on top and bottom surfaces of each of

the two flexure hinges of the forceps (Figure 2.6) [19]. RMS errors were close to 0.1

N. One of the disadvantages of this method is biocompatibility issue due to contact of

sensors and wires with patient tissues, another is increased cost of each tool. Taking

into account that each instrument has limited lifespan [20], it will lead to significant

increase in surgery cost.

Some researchers use optical methods for the force evaluation. These methods

are divided by di↵erent sensing principles they use: intensity modulation, wavelength

13



Figure 2.6: Prototype of the 2-DOF Compliant Forceps [19]

modulation, and phase modulation [21]. Peirs et al. developed 3-axial force sensor

that uses light intensity modulation principle [22]. It is based on a flexible titanium

structure, that deforms with applied forces (Figure 2.7). These deformations are mea-

sured through reflective measurements with three optical fibers. The method shows

measurement force range 0.01 N to 2.5 N with 0.01 N resolution. The disadvantage

of this method is narrow force measurement range.

2.3.2 New Instrument Designs

Making new surgical instrument with implemented force sensors is another way

to achieve force feedback. Schwalb et al. developed the new force-sensing surgical

tool, that uses a proximally located force/torque sensor (Figure 2.8) [23]. This allows
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Figure 2.7: Optical Force Sensor [22]

avoiding miniaturization and sterilization issues. The method has high sensing accu-

racy with errors less than 0.09 N. The outer diameter of the developed tool is 12 mm.

This method as well requires an increase in the tool cost, leading to higher surgery

expenses.

2.3.3 Sensorless Methods

All sensorless estimation methods avoid drawbacks associated with biocompati-

bility and integration issues. There are 2 methods: vision-based force feedback and

motor currents measurement method.

Aviles et al. proposed to use vision-based solution with supervised learning to

estimate the applied forces [24]. After extraction of the motion geometry of the

object surface, they use a deep network to learn the relationship between the extracted

visual information and the applied force (Figure 2.9). The evaluated average root-

mean-square error of the method is 0.02 N. The disadvantage of this methods is the
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Figure 2.8: Force-Sensing Surgical Tool [23]

necessity to know object’s material properties, and some materials such as bones

would not visually deform. Additionally, the method has significant time delays due

to computation time and is not suitable for real-time force feedback.

Figure 2.9: Flowchart of Vision-Based Force Estimation Approach [24]

In [25, 26], authors estimate external forces using dynamics models and motor

currents from the robot. They linearly parameterized PSM dynamics model and used

it to derive forces values. As a result, they implemented sensorless force estimation

method and they concluded that it was feasible. Even though, the proposed method
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does not show su�cient repeatability and accuracy.

2.4 Force Sensing Technologies

For the force sensing depending on their operating principle following types of

sensors can be used: piezoelectric, strain-gauges, quantum tunneling composite pills

(QTC Pills) or optical sensors [27].

• Piezoelectric sensors consist of two crystal disks with an electrode foil in be-

tween. When force is applied, an electric charge, proportional to the applied

force, is obtained and can be measured. Piezoelectric sensors show small defor-

mation when force is applied, this results in a high resonance frequency. Also,

piezoelectric sensors due to their principle of operation have significant linearity

error and drift [28].

• QTC Pills are flexible polymers, that have exceptional electrical properties.

They are made of a nonconducting material that contains small nickel particles.

In the resting state, it acts as an insulator, because metal particles are too far

from each other. When it is compressed, its conductivity increases and current

can pass through it [29]. QTC Pills are very sensitive and can work in wide

ranged o forces. However, they have an exponential relationship between force

and resistance, they are temperature sensitive and depend on charge application

time. Meaning they have low accuracy and not suitable for dynamic force
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measurements [30].

• In the strain gauge based force transducers, the force causes deformation and

subsequent linear change in resistance. Strain gauges are usually connected to

a Wheatstone bridge circuit, where the output voltage is proportional to the

applied force. Strain gauge based transducers provide small individual errors

(200 ppm), show no drift, and are therefore appropriate for long-term monitor-

ing tasks. However, they are relatively big, temperature dependent, and have a

lower resonance frequency in comparison to piezoelectric sensors [27, 28].

• Optical retro-reflective sensors can be used for the force measurements. Emitter

and receiver of these sensors are located at the same host. The light from the

emitter goes through optical fibers reaches reflector and the reflected light goes

back to the receiver. An interruption of the light beam due to bending can

initiate a change of the signal output. Optical sensors are rarely used for force

sensing applications because measurement range and sensing accuracy of such

sensors are limited [21].

On the basis of the above mentioned, piezoelectric sensors are preferable for dy-

namic measurements of small forces while strain gauge sensors are better when large

forces are measured. In this study, strain gauges were used since they show better

accuracy and long-term stability [27,28].
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2.5 Contributions

Force sensing devices for measuring forces in X-Y direction and one for Z-direction

measurement were created. They allow getting force readings from the daVinci tools

of the PSM. These devices can be easily added to the existing daVinci system. Since

we have to add created device on each robot arm only, it is cheaper than placement of

sensors on each separate surgical tool. Moreover, the created devices allow measuring

forces faster than through the visual data processing method and could show better

precision than the motor current method.
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Chapter 3

Force Sensor Design and

Characterization

This chapter sets the requirements for the force sensing system, explains the

methodology behind the design of the force-sensing devices, including mechanical,

electrical, and software design, and finally describes the calibration process of the

created system and shows the calibration results.

3.1 Requirements for the System

First, from the literature review following requirements for the force sensing device

were outlined:

• Biocompatibility . All the devices below the sterile adapter on the PSM are
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required to be sterilized (Figure 3.1). Any device that is in direct contact with a

patient needs to be biocompatible, such as the instrument shaft and the cannula.

Figure 3.1: Cannula Placement Inside a Patient on the daVinci Si System [1]

• Force range . One of forces that have to be measured is maximum safe value

before the instrument shaft is overloaded and damaged, if the force goes beyond

that range it can be used to trigger safety alert. Friedman et al. analyzed

instances of the daVinci instrument failuers [31] and concluded that majority

of failures were of the instruments wrist or tool tip. Additional studies have

to be done to find the magnitude and the direction of the forces that caused

these failures. Max value of the force applied during surgeries corresponds to
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retractor forces (up to 10 N) [32]. Majority of people perceive a force of 11N to

be a solid object [33]. In order to meet these requirement the designed device

needs to measure forces between 0 N and at least 11 N, but the maximum level

could be higher depending on the threshold for the tool damage.

• Sensitivity and accuracy . The device needs high resolution (at least 0.05N)

so user can feel small di↵erences between materials and give accurate readings

(error < 0.1N) [33].

• Bandwidth . Because the device is used for real-time haptic feedback, the

minimum rate for data acquisition is 0.5 kHz [34] and ideally it should be close

to 1 kHz.

• No restriction of motion range of the device . The forces should be

measured in three directions independently from each other. At the same time,

the tool should freely rotate and change the depth of insertion.

• Linearity . Calibration curve of created sensors should be linear.

• Device modularity . Force-sensing devices should be designed so they can be

easily added to the existing system and fit daVinci cannula and sterile adapter.

Also, the sensors should use ROS interface due to its inter-process communica-

tion ability and modularity [35].
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3.2 Force Measurement

Figure 3.2: Developed Force Measuring System Attached to the PSM. The daVinci
instrument is inserted in the sterile adapter of the PSM arm. Z Device is attached to
the sterile adapter. XY Device is press-fitted on the cannula end.

A block diagram of the created system for 3-DOF force measurement is shown in

Figure 3.3. Forces that applied on the end of the surgical tool are measured using

strain gauges, which change their resistance with force. Using created printed circuit

boards (PCBs), these resistance changes are measured and published within robot

operating system (ROS). At the same time, we measure a current joint position of

the tool, which is needed for the force calibration. The position data and data from

PCBs are used to find values of the force in X, Y, Z directions (Figure 3.2).
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Figure 3.3: Block Diagram

3.3 Mechanical Design

This chapter describes mechanical design of two sensors, one for measurement of

the X-Y component of the force, and another for the measurement of the Z-component

of the force.

3.3.1 X-Y Device

(a) Photo (b) 3D Model

Figure 3.4: XY-direction Force Feedback Sensor
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The XY-device consists of one sleeve and one set screw. We manufactured sleeve

using Aluminum 6061 Alloy. The manufactured sleeve is placed on the cannula end

and is fixed with a set screw on the top (Figure 3.4). The sleeve was manufactured

slightly wider than the cannula to compensate tolerances in cannula sizes.

Figure 3.5: Displacement of the XY Device

In order to get accurate readings maximum displacement of the sleeve sides should

prevent shaft from hitting the cannula. It means that it should be less than distance

between the cannula and the instrument shaft d = (d
can

�d

shaft

)/2 = (8.75�8.4)/2 =

0.175 mm, where d

can

is inner diameter of the cannula and d

shaft

is outer diameter

of the shaft. From the Solidworks simulation (Figure 3.5), maximum displacement is

0.037 mm, which is in appropriate range.

3.3.2 Z Device

Z-device principle of work based on low rigidity in the connection between the

sterile adapter and the surgical instrument, which allows movement of the instrument
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(a) Photo (b) 3D Model

Figure 3.6: Z-direction Force Feedback Sensor

for approximately 0.3 mm in Z-direction. By designing the Z-Device to be more rigid

than this connection, we can support the force in Z-Device rather than the sterile

adapter.

Z-device (Figures 3.6 - 3.7) consists of attachment to the sterile adapter, 2 thrust

ball bearings, three rings, plate, and two cylindrical spacers. Three rings and two

ball bearings are used to transfer only z-directional forces further to the plate and

keep the ability of the shaft to rotate. The ring in the center is in direct contact with

the instrument shaft, two outer rings are for the push and pull forces transfer. The

plate experience maximum strain and all strain gauge sensors are mounted on it. Two

cylindrical spacers are used to give plate space to move and they are mounted on the

attachment plate. The attachment plate consists of three plates, they are press-fitted

on the sterile adapter and fixed with four set screws.

Three rings and plate were manufactured with Aluminum Alloy 6061, attachment
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parts were 3-D printed, fasteners were used as spacers.

Figure 3.7: Z-direction Force Feedback Sensor (Section View). Center ring in direct
contact with instrument shaft, the contact was created using set screw. Thrust ball
bearings are used to transfer only Z-component of the force. Top and bottom rings
transfer push and pull forces to the plate. Spacers are used to give a space for plate
to move. Set screws are used to fit attachment plates on the sterile adapter

3.4 Sensor Selection and Placement Op-

timization

This section describes the selection of strain gauges and their mounting locations,

and the process of their attachment to the devices (described in previous Section 3.3).
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3.4.1 Sensor Placement Optimization

In order to accurately measure forces, the strain gauges should be placed in the

area with the highest strain. A finite element analysis was done in Solidworks to

find strain distribution and assess the better mounting location of the strain gauges

on the created devices. In order to run finite element analysis material properties,

such as elastic modulus, Poisson’s ratio, and density are necessary to know. Devices

material is aluminum 6061, which has elastic modulus 68.9 GPa, Poisson’s ratio 0.33,

and density 2700 kg/m3 [36]. Since the shaft and cannula materials are unknown, in

order to run finite element analysis their elasticity modulus and density were found

experimentally.

3.4.1.1 Elastic Modulus Measurements

Elastic Modulus of the shaft and the cannula were found experimentally (Figure

3.8). One end of the observing sample (shaft/cannula) was fixed and the force was

applied to the other end. We used weights 250g for the shaft and 555g for the

cannula to apply forces. The deformation caused by forces was detected with a dial

indicator. The experiment was repeated 5 times, average displacement value was used

to calculate elastic modulus. Results are shown in Table 3.1.

Elastic Modulus was found using the following equation:

E =
FL

3

3�I
(3.1)
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Figure 3.8: Setup to Measure Elastic Modulus

where F - force, L - length from the fixed point to indicator, I - area moment of

inertia, � - displacement.

Area moment of Inertia:

I =
⇡(d4

o

� d

4
i

)

64
(3.2)

where d

o

- cylinder outside diameter, d
i

- cylinder inside diameter.

Force acting on indicator:

F =
L

tot

L

mg (3.3)

where L

tot

- total length of the object, m - mass of the weight, g - gravitational

constant.

Experimentally found the mean value of elastic modulus of the shaft is equal to

44.31 GPa with standard deviation (SD) 1.86 GPa, an elastic modulus of the cannula

is 63.92 GPa with SD 2.97 GPa.
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Table 3.1: Elasticity Modulus Measurement Data

Component d

o

, mm d

i

, mm I, mm4
m, g F , N L, mm L

tot

, mm
Shaft 8.4 6 1.808 · 10�10 250 3.25 276.2 366.8

Cannula 10.54 8.75 3.181 · 10�10 555 6.011 95.5 105.55

Component � ± SD, mm E ± SD, GPa
Shaft 2.856± 0.123 44.31± 1.86

Cannula 0.086± 0.004 63.92± 2.97

3.4.1.2 Density Measurements

Density was found using following equation:

p =
m

V

(3.4)

where m - mass, V - volume.

Weight was measured using mechanical scale. Volume of the shaft was found by

following equation: V = ⇡h(r2
o

� r

2
i

) = 4.36 · 10�5
m

3. Volume of the cannula was

found using water displacement method. Shaft material density is 473 kg/m3, cannula

material density is 5523 kg/m3.

3.4.1.3 Simulation Results

The mounting location of the active strain gauges should be under the greatest

amount of strain. From the Figure 3.9, it can be seen that strain gauges for X-

Y direction device should be mounted on the area shown green, that corresponds to

strain value approximately equal to 1.5 ·10�4. Passive strain gauges, that will be used

only for temperature compensation, will be placed in the blue area perpendicular to
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the active strain gauges.

Figure 3.9: Strain in the Device to Measure Forces in X-Y Direction

Figure 3.10: Strain in the Device to Measure Forces in Z Direction

For Z-direction measurement forces (Figure 3.10), the area shown with yellow-

green color under the highest strain. On both sides and both ends of this plate strain

gauges should be placed to form the full bridge.

All material properties used for simulations are listed in Table 3.2.
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Table 3.2: Material Properties

Component Elastic Modulus, GPa Density, kg/ m3

Shaft 44.31 473
Cannula 63.92 5523
Sleeve 68.9 2700

3.4.2 Strain Gauge

This section describes the selection criteria of the strain gauges.

According to the manual for strain gauge selection provided by Vishay Micro-

Measurements, in the created sensors the strain gauge needs to have following pa-

rameters:

• One of the requirements for the system is unidirectional force measurements.

Single grid sensors are used for these purposes.

• Sensors need to be encapsulated with pre-attached leads, since they are easier

to mount.

• Sensors with STC (self-temperature-compensation) show smaller temperature

dependence.

• Length of the strain gauge depends on the maximum strain in the system. From

the FEM analysis, the maximum strain on the created device is 1.5 · 10�4, in

case of 11 N load with the maximally opened shaft. From the literature, strain

gauges length should be more than 5% of maximum strain, hence, the minimum
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length of the strain gauge should be 0.0075 mm.

• Gauge Factor (GF) for strain gauges usually is 2. According to the formula

(3.5) strain gauge with resistance 120 ⌦ have maximum change in resistance

equal to 0.036 ⌦, and 350 - 0.105 ⌦:

�R = GF ·R · " (3.5)

where GF - gauge factor, R - resistance, "- strain.

The selected strain gauges, used in the device, are BF350-3AA High-Precision

Strain Gauges with resistance 350 ± 0.1⌦, GF is 2, single grid, encapsulated with

pre-attached leads. Bill for strain gauges is provided in Appendix B.

3.4.3 Installation of Strain Gauges

Application of strain gauges was done following the manual provided by Vishay

Micro-Measurements [37].

First, the working surface (glass) and tweezers were cleaned with Neutralizer 5A

(Figure 3.11). After that shaft surface preparation was started, using solvent de-

greaser GC-6 Isopropyl Alcohol. A gauge layout was then applied with a 4H drafting

pencil. The surface was then conditioned with Conditioner A and the extra liquid was

wiped with gauze. Finally, the surface was then neutralized with M-Prep Neutralizer

5A [37].
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Figure 3.11: Materials for Strain Gauge Application

The strain gauges were first placed on the glass and then transported using mylar

tape onto the instrument surface. A thin layer of catalyst was applied to the strain

gauge and given one minute to dry. Then adhesive M-BOND 200 was applied on

the surface, the pressure was applied on the tape for one minute, then two more

minutes to let it dry before the tape was removed. Then leads soldering was done by

application of pads, and soldering them with thin wires [38].

The methodology of the strain gauge application is more specifically described

in [37]. In compliance with the application guide, the same materials and technique

can be used to apply strain gauges on di↵erent materials (metals, plastics). Bill of

materials for strain gauge application is provided in Appendix B.
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3.5 Electrical and Software Design

This section describes the printed circuit board (PCB) created to detect and am-

plify changes in sensor readings, the microcontroller software to sent sensor readings

within ROS, and the ROS architecture used to find forces from sensor readings.

3.5.1 Circuit design

PCB was developed to amplify sensor readings, digitize them and sent within

ROS. Signal waveforms and the block diagram of this PCB are shown in Figure 3.12.

J1

+5V

-5V

J2

+5V

-5V

ADC MCConverter
to 0-5V

USB-UART
interface PC 

WB

WB

Instr. amp 1

2
3

0 t

Force

t

Instr. amp

-5 V

+5 V
0

0
t

Conv. 0-5 V
+5 V

+2.5 V

1

2

3

Figure 3.12: Block Diagram of the Circuit

Wheatstone bridge circuit is used to detect small resistance changes in the strain

gauges. Full-bridge configuration of the circuit was used, because it gives temperature

insensitivity (all sensors will change their output with temperature change) and high

strain sensitivity. Four strain gauges are connected to form a Wheatstone bridge

circuit. In Figures 3.13 - 3.14 placement of strain gauges (1-4) and their Wheatstone

bridge configurations are shown for both devices. Strain gauges deform due to applied

forces (1) in Figure 3.12, and it causes the voltage change on Wheatstone bridge. The
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output signal from the Wheatstone bridge goes to the instrumentation amplifier (2).

Since ADC can convert only positive voltage, voltage converter changes voltage range

of the output signal from (�5V to +5V ) to (0V to +5V ) range (3). That signal

is converted to the digital signal with 16-bit ADC, which communicates with the

microcontroller via SPI interface. The output signal is transferred to the computer

via USB.

1

3

2

4

-IN
4

1 2

3
+IN

-Vs

+Vs

Figure 3.13: Wheatstone Bridge Configuration of the XY-device

-IN
2

1 3

4
+IN

-Vs

+Vs

1 2

3 4

Figure 3.14: Wheatstone Bridge Configuration of the Z-device

Using Altium Designer 15.1 the PCB design was developed and manufactured at

Advanced Circuits [39] (see more design details in Appendix A, bill of materials is in

Appendix B).

In the developed PCB (Figure 3.15) trimpots are used for calibration of the in-
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Figure 3.15: Manufactured PCB

strumentation amplifier gain (shown yellow) and change of reference voltage (shown

red).

Instrumentation amplifier gain change is needed to set up appropriate measuring

force range (0-11 N). During calibration, when 11 N applied on the tool end, the

output signal (that goes to ADC) should be smaller than 4 V. When the same force

applied in the opposite direction, the output signal should be bigger than 1 V.

Reference voltage change is used for the compensation of Wheatstone bridge un-

balance caused by strain gauge resistance tolerances. During the calibration, it should

be tuned until it gives the output signal close to 2.5 V when no forces applied on the

device.
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3.5.2 Noise Analysis

Fast Fourier transform (FFT) waveform analysis of the noise signal on PCB out-

puts (before signal goes to ADC) was performed using Tektronix MSO 4034 Mixed

Signal Oscilloscope. The oscilloscope automatically applied the Hanning window,

which has good frequency resolution and reduced spectral leakage [40].

(a) 1st Output of the PCB (b) 2nd Output of the PCB

Figure 3.16: FFT Analysis Results

The signal frequency from the force sensor should be in the range of (0 to 1

kHz). From the FFT analysis results (Figure 3.16) it can be concluded, that the

noise frequency is in range (2.5 kHz and higher) with amplitude (-50 mV to 70 mV)

for both channels. That means low pass filter with cuto↵ frequency 2 kHz should be

applied to the output signal. It was decided to use data averaging due to its simplicity

of implementation and small time delays. It is an equivalent of low pass filtering that

compensates the high-frequency noise [41].
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3.5.3 Microcontroller Software

Microcontroller ATMEGA328P is used in the developed PCB for data acquisition,

filtering, and sending to ROS. The microcontroller has open-source packages for serial

communication with ROS. The microcontroller is programmed to initialize ros nodes

with names ”adc xy” for XY-device and ”adc zlc” for Z-device. The master-slave

communication is created between X-Y and Z- devices for data acquisition synchro-

nization by sending start conversion signals between two PCBs. When one of the

devices gets the signal it starts to communicate with ADC though SPI interface (Fig-

ure 3.17) [42]. The acquired data (5.8 kHz) is filtered from the high-frequency noise

by averaging of the 5 most recent readings. And the filtered data is published through

the serial port with the baud rate 115200 bits per second.

Figure 3.17: LTC1865 Operating Sequence [43]
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3.5.4 ROS Architecture

Figure 3.18 shows the ROS architecture of the developed system. In the python

script we create a force feedback node. The node is subscribed to X, Y, Z ADC data

acquired form sensors and position of the sterile adapter from the daVinci controller.

These data are used to find forces. The calculated forces (force x, force y, force z )

are then published.

X-Y Device

/adc1 - Z-dir 

Z Device daVinci
Controller

/adc_xy /adc_zlc

Force-Feedback 
Processor 

/adc0 - Y-dir 
/adc1 - X-dir 

joint_position

/force_feedback

Figure 3.18: ROS Architecture

The program calculates magnitude of the forces in X, Y, Z directions using the

calibration equation:

F =
adc

data

� b

a

(3.6)

where b is the constant equal to ADC reading when F = 0, adc
data

is current

sensor reading in corresponding direction, and a is linear function of sterile adapter

position:

a = c · position+ d (3.7)

40



where c and d are constants found during calibration and position is the position

of the sterile adapter (it will be discussed in the Section 3.7.2).

Z-device readings does not depend on the position of the sterile adapter. Hence,

a has a constant value for Z-device.

3.6 Calibration

The calibration system and calibration process of the created devices are described

in this section. The described system can be used to calibrate other similar force

sensors.

3.6.1 Calibration System

In order to find parameters of the calibration equation (3.6), the calibration system

was developed (Figures 3.19 - 3.20). As shown in the figure 3.19 the load cell and

Polaris optical tracking system are used to find ”actual” force applied to the tool

end. The load cell is used to find the magnitude of the applied force and the optical

markers (4-5) to find the direction of the force.

The calibration of the device starts with calibration of the load cell. The daVinci

tool is inserted in the sterile adapter. The force readings depend on the position of

the sterile adapter, meaning that the force/sensor readings curve should be found for

di↵erent positions of the adapter. Finding the curve for only two positions would
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be enough, because the correlation between the curve and position is linear, as the

equation (3.7) shows.

Figure 3.19: Photo of the Calibration Setup (from the prospective of the Polaris)

Before starting a data collection, the PSM joint of the sterile adapter is fixed in

the position 1. After fixing the adapter, in order to transform Polaris camera frame

to the robot frame, the transformation matrix should be found. For this purpose,

three optical markers (1-3) are attached to the PSM. Z-direction vector corresponds

to the vector formed by optical markers (2-1), Y-direction vector is formed by optical

markers (2-3). X-direction vector can be found as a cross product between these two

vectors:

X = Y ⇥ Z (3.8)

The transformation matrix Tr
c is found using coordinates of the X, Y, Z vectors
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Figure 3.20: Block Diagram of the Calibration Setup

and coordinates of the optical marker (2) defined as an origin vector.
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After finding the transformation matrix, the data collection starts. Polaris pub-

lishes coordinates of the optical markers (4-5). These coordinates are transformed to

the robot frame:

Pr = Tr
c
�1 ·Pc (3.10)

where Pr - coordinates of the marker in the robot frame, Pc - coordinates in the

camera frame.

The unit vector of the applied force is found in the robot frame:

U =
P5 �P4

|P5 �P4|
(3.11)

where P5 is the position of the optical marker (5), P4 is the position of the marker

(4), they both are in the robot frame.

The vector of the applied force in the robot frame can be found:

F = F

m

·U (3.12)

where F

m

is the force magnitude found using the load cell. At the same time

data from X, Y, Z sensors is collected. The collected data is used to find calibration

equation parameters.
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3.6.2 Calibration of the Load Cell

The calibration of the load cell is a part of the calibration process of the created

device. The block diagram of the setup for the load cell calibration is shown in Figure

3.21. The force F was applied on the load cell using weights, its value:

F = mg (3.13)

where m is mass of the weight and g is the gravitational constant.

Ubuntu/ROSLoad cell 
data Load Cell PCB  1

Weight

Force

Figure 3.21: Block Diagram of the Load Cell Calibration Setup

The calibration equation for the load cell is following:

F

m

= adc

lc

⇤ a
lc

+ b

lc

(3.14)

where adc

lc

is acquired ADC data from the load cell; a
lc

and b

lc

are constants of

the linear equation.

Calibration resulted in parameters of the linear equation being a

lc

= �4.95 · 10�4

and b

lc

= 16.6. These values were used to find the magnitude of the applied force on
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Figure 3.22: Load Cell Calibration Result

the tool end during X-Y and Z devices calibration.

3.7 Results

This section provides the calibration results for the created sensors. And also the

results from the study relating the sterile adapter position to the coe�cients of the

calibration curves.

3.7.1 Calibration Results

The calibration results are shown in Figures 3.23 - 3.24, where blue dots are sensor

readings and the calibration function shown as a red line. The results for the Z device

are presented in Figure 3.24(a). As an alternative method to evaluate forces exerted

in a Z-direction we used joint e↵ort readings (Figure 3.24(b)). This method is simple
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to implement by subscribing to the joint e↵orts of the daVinci controller and can be

used for comparison with created Z-device.

The performance of the created devices was evaluated using standard sensor char-

acteristics, such as absolute error, signal to noise ratio, root mean square error, sen-

sitivity, hysteresis, and measurement range.

All the following information about sensor characteristics is from [44].

(a) X-direction

(b) Y-direction

Figure 3.23: Calibration Results of XY Device during Loading and Unloading (n=3)

The accuracy of the developed sensory systems was assessed using the Root Mean
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(a) Z Device

(b) Joint E↵ort

Figure 3.24: Calibration Results in Z-direction during Loading and Unloading (n=3)

Square Error (RMSE), which is:

RMSE =

sP
n

i=1 (ŷi � y

i

)2

n

(3.15)

where ŷ

i

is predicted with equation (3.6) force value ; y
i

is observed ”actual” force

value found using load cell and Polaris; n is number of observations. RMSE values of

all systems are high, meaning low accuracy of the developed system.
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The error is the di↵erence between the actual value of the force and the value

produced by the system (Equation 3.16). Errors are related to accuracy and can be

caused by di↵erent sources. In our case all errors were higher than 0.05 N, meaning

that system does not meet accuracy requirements.

error = |ŷ
i

� y

i

| (3.16)

One of the measurements of signal quality is signal-to-noise ratio (SNR). A higher

value of SNR means the clear acquisitions with low signal distortions and artifacts

caused by unwanted noise. It is defined as:

SNR =
µ

�

(3.17)

where µ is the mean value of the signal, � is the standard deviation of the noise. SNR

values for all systems are bigger than 1, meaning that all systems have relatively low

noise.

The slope of the calibration curve is used for the sensitivity S calculation.

S = Dy/Dx (3.18)

where Dy is the incremental change in the sensors output, Dx is the incremental

change of the force. All the systems have relatively high sensitivity.

Resolution is the smallest change of the applied force that gives a noticeable change
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in the sensor output, it is limited by the signal noise. Devices have higher resolution

than required 0.3 N.

The linearity of the system is the proximity of the calibration curve to the straight

line. R2 is used to evaluate linearity by measuring the closeness of the measured data

to the fitted regression line. Generally, strain gauges have the linear response with

deformation and all sensors showed high linearity with R

2 higher than 90%.

Hysteresis is the di↵erence between sensor outputs when the sensor is loaded ver-

sus unloaded. All sensors have shown hysteresis, up to 2.8 N. The Z-Device shows the

highest hysteresis, the possible reason could be small thickness of the plate (where

sensors are attached), that causes deformation during loading and unloading to fol-

low di↵erent path. Another reason could be unevenness of the contact between the

ball bearings and the rings. Hysteresis of the joint e↵ort method can be explained

by the complicated mechanical structure of the robot arm. Possible explanation of

the X-Y Device hysteresis is uneven contact between the device and the instrument

shaft. Meaning for all devices hysteresis can be caused by imperfections of mechanical

structures.

The measurement range consists of the maximum and minimum values of the force

that can be measured with created systems. For the created system, it corresponds

to force values, when the output signal reaches saturation. However, for Z-directional

measurements, when z-component of the applied force was higher than 12 N it caused

sliding of the sterile adapter. Meaning physical limitation for Z-direction force mea-
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surements. All designed devices measure forces in slightly higher than ±11N range.

When the applied force exceeds the specified range, the device readings can be used

to trigger safety alert.

Precision represents the ability of the system to give the same output under the

same conditions. The precision of the system was assessed by the standard deviation

of the sensor outputs when similar forces were applied. All sensors have low precision,

which is reflected in high absolute errors values.

All sensor characteristics were calculated for X-Y device, Z-device, and Z-direction

evaluation joint e↵ort method and provided in the Table 3.3. For each sensor, the

calculated sensor characteristics are average values from the results of 3 trials.

Table 3.3: Sensors Characteristics

X-sensor Y-sensor Z-sensor Joint E↵ort
Error ± SD, N 0.059± 0.435 0.017± 0.755 �0.716± 1.324 �1.411± 0.672

RMSE 0.44 0.75 1.5 1.56
S/N 2888 3041 114 566

Noise SD, N 0.011 0.004 0.115 0.017
Sensitivity 911 1030 618 0.977
Precision, N 0.4 0.65 0.63 0.35
Resolution, N 0.03 0.02 0.2 0.03

R

2 0.965 0.924 0.938 0.963
Range, N -19 to 23 -18 to 20 -12 to 12 -12 to 12

Hysteresis, N 0.99 2.4 2.8 1.2
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3.7.2 Calibration Curve Dependence from Sterile

Adapter Position

Movement of the sterile adapter joint, which is at the proximal end of the instru-

ment, causes change of the moment arm length (L
gauge

in Figure 3.25).

Sterile Adapter Cannula X-Y Sensor

Lgauge

Lshaft

Position 2Position 1 Force

Figure 3.25: Sterile Adapter Movement

The force applied on the X-Y sensor F
sensor

linearly depends on the moment arm

length:

F

sensor

=
L

shaft

L

gauge

· F
tool

(3.19)

where F

tool

is the force applied on the tool end, L
shaft

is the length of the shaft.

The dependence between position of the sterile adapter and calibration curve

constants (a and b from equation 3.6) is linear for X and Y force components (Figures

3.26 - 3.27). We ran 3 trials for each position.

The R2 of constant a is 0.9 for X-component of the force, 0.827 for Y-component.

The low linear fit is caused by considerable systematic errors of the sensors.

Constant b does not depend on the sterile adapter position and changes due to

systematic errors and noise in the system.
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Figure 3.26: Sterile Adapter Position Calibration Results for X-direction
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Figure 3.27: Sterile Adapter Position Calibration Results for Y-direction
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Chapter 4

Discussion and Conclusion

The previous chapter discussed all aspects of the force sensor design for the daVinci

robot, concluding with calibration results of the created sensors. The results have

shown that the developed system is linear and has high sensitivity, appropriate mea-

suring range, high resolution, and low noise. In addition, the results from FFT

analysis have shown that the developed PCB gives low noise output. The noise is

outside frequency range of the original signal and can be easily filtered out using

digital low pass filter.

At the same time, the sensory system has high absolute errors, high RMSE, low

precision, and significant hysteresis. Figure 4.1 shows X-component of the force mea-

sured at the same time using the X-Y device and using ”actual force” data from the

load cell. The error value changes simultaneously with rapid changes of the force

applied. Taking into account, the low noisiness of the system, plausible explanation
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of the fluctuations in the output signal is systematic errors. Important to note, that

the errors could be related to the high hysteresis of the sensors.

4.1 Mechanical Design Issues

The force-sensing devices were designed so they can easily fit the daVinci cannula

and the sterile adapter. The tolerances are compensated by adjustment of the set

screws, giving good modularity of the system.

One of the disadvantages is the addition of the weight to the arm, that can alter

robot performance. Taking into account, that the device will be placed close to the

center of rotation of the robot arm, it will have minimal e↵ect on the moment of

inertia in comparison to sensors added to the grippers.
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Figure 4.1: Actual and Measured Forces in X-direction

The calibration curve for Y-directional sensor has higher absolute error values,

higher RMSE and lower linearity in comparison to X-directional sensor. The reason
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for that could be mechanical design issues caused by manufacturing problems (Figure

4.2). Di↵erent thicknesses of the walls, where sensors applied, cause di↵erent strain

values for positive and negative directions of the force.

Figure 4.2: Lower Face of the X-Y Device without Tool Shaft

Comparison of two Z-component of the force measurement methods has shown,

that Z Device has lower signal-to-noise ratio, lower resolution, lower linearity, and

higher hysteresis. Even though the joint e↵ort method is slightly better than the

created device, it does not comply with all sensor requirements, and it is hard to

change the output results for this method. The major advantage of the created Z

Device is the ability to improve it. For example, hysteresis can be reduced by changing

the force measurement plate material and its thickness.

The system has separate Wheatstone bridges for each direction, giving the ability

to measure each component of the force independently. However, Z Device and the

X-Y device cannot work together at the same time, because created X-Y device takes

the Z-component of the force and slightly restricts rotation of the shaft. In order to
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solve that issue, we can change the mechanical design of the X-Y device by increasing

the size of the sleeve and adding slippery material between the shaft and the sleeve

(Figure 4.3). However, it will cause other issues with increased incision size to 1.9

cm. It is still in the appropriate range (1-2 cm) [45], however, the patient recovery

time would increase. Another option could be moving the X-Y device on the top of

the cannula or changing the cannula design and applying sensors on it.

Figure 4.3: New X-Y Device Design

Both devices should undergo sterilization. XY device goes inside the patient,

meaning that it should be created using biocompatible materials. The current ver-

sion of the device is not biocompatible. The biocompatibility can be achieved using

stainless steel as a device material and biocompatible epoxy to cover strain gauges,

also Teflon coated wires should be used for all electrical connections. Use of stainless
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steel will require the change of the device dimensions since the material has di↵erent

elasticity.

4.2 Electrical Design Issues

The real-time haptic feedback requires minimum data acquisition speed to be 1

kHz [34]. However, the current maximum speed is 588 Hz due to the limitation of

data transfer speed of serial communication (115.2 Kbps). In order to increase the

speed, the communication channel can be changed to SPI (up to 10 Mbps) [46] or

one of the wireless protocols, such as Bluetooth (up to 1 Mbps) or wifi (up to 100

Mbps) [47]. Also, the communication protocol between microcontroller and ADC can

be changed from SPI (5.8 kHz) to the faster parallel communication. Additionally,

the microcontroller can be changed to faster one, so it can support wireless commu-

nication. All these changes require the change of the PCB design and microcontroller

software.

Bandwidth of the noise signal is in range 2.5 kHz and higher, meaning the need in

low pass filter with cuto↵ frequency 2 kHz. It can be integrated in the system using

digital or analog filtering.

Also, in the PCB the amount of Wheatstone bridges and ADCs should be increased

from 2 to 4 to reduce the overall size of the system by removing second PCB and

master-slave communication.
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4.3 Conclusion

The created sensor gives 3-DOF force feedback by using lateral force sensing in a

compact modular approach, a novel axial force sensing approach, and a custom ROS-

enabled sensor interface. A new calibration approach of the force sensing devices

was created. The contributions show that it is possible to add force-feedback in the

daVinci robot without major changes of the existing system. However, not all of the

requirements for the force measuring system were satisfied, meaning that the sensors

need further improvements in both electrical and mechanical designs.
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Appendix A. Circuit
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Figure 4.4: 1st Instrumentation Amplifier
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Figure 4.5: 2nd Instrumentation Amplifier
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Figure 4.7: Microcontroller and Power Source
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Figure 4.9: PCB Layout
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Appendix B. Bill of Materials

Comment Description Designator Footprint Quantity Unit Price Total Price

PCB Materials

Capacitors

1uF

C2, C16_Apm1, 
C19_Amp1, 
C16_Amp2, 
C19_Amp2 0603 5 0.05$ 0.23$

0.1uF

C13, C17, C27, 
C26, C28, C25, 
C9, C10, C6, 
C29, C30, C31 0603 12 0.08$ 0.91$

22pF C4, C5 0603 2 0.10$ 0.20$

0.01uF

C3, C14_Amp1, 
C18_Amp1, 
C14_Amp2, 
C18_Amp2 0603 5 0.08$ 0.38$

 CAP TANT 4.7UF 16V 
20% 0603 C23, C24 0603 2 0.55$ 1.09$

Standard Tantalum, 4.7 
uF, +/- 10%, 16 V, -55 to 
125 degC, 2-Pin SMD 
(1206), RoHS, Tape and 
Reel C7, C8 1206 2 0.24$ 0.48$

Resistors

100
100R 0.1W 5% 0603 
(1608 Metric)  SMD R2,R3,R4,R25 0603 4 0.30$ 1.20$

330
330R 0.1W 5% 0603 
(1608 Metric)  SMD R23,R24,R26,R27 0603 4 0.01$ 0.04$

510
510R 0.1W 5% 0603 
(1608 Metric)  SMD

R6_Amp1, 
R6_Amp2 0603 2 0.09$ 0.17$

1k

Chip Resistor, 1 KOhm, 
+/-1%, 0.1 W, -55 to 155 
degC, 0603 (1608 
Metric), RoHS, Tape and 
Reel

R12_Amp1, 
R12_Amp2, 
R28_Amp1, 
R28_Amp2 0603 4 0.30$ 1.20$

47k

Chip Resistor, 47 KOhm, 
+/-1%, 0.1 W, -55 to 155 
degC, 0603 (1608 
Metric), RoHS, Tape and 
Reel R1 0603 1 0.11$ 0.11$

10k

Chip Resistor, 10 KOhm, 
+/-1%, 0.1 W, -55 to 155 
degC, 0603 (1608 
Metric), RoHS, Tape and 
Reel R9, R18 0603 2 0.10$ 0.20$

200K

Chip Resistor, 200 
KOhm, +/-1%, 0.1 W, -55 
to 155 degC, 0603 (1608 
Metric), RoHS, Tape and 
Reel R10, R19 0603 2 0.10$ 0.20$

500 Trimpot
R5_Amp1, 
R5_Amp2

Trimpot_Cut_tape_3.4x3.
4x2 2 1.28$ 2.55$

20k Trimpot
R11, R13_Amp1, 
R13_Amp2, R20

Trimpot_Cut_tape_3.4x3.
4x2 4 1.28$ 5.11$

Other components

Switch 430152043826
WS-TASV SMD Tact 
Switch 6X6 mm SW1 430152043826 1 0.47$ 0.47$

ATmega328P

8-bit AVR 
Microcontroller, 8KB 
Flash, 512 Bytes EEPROM, 
1KB SRAM, 32-pin TQFP, 
Industrial Grade (-40°C 
to 85°C), Reel U1 1 2.20$ 2.20$

Figure 4.10: PCB Materials Bill (1)
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ADC LTC1865 U2 LTC1865_SOIC8 1 13.20$ 13.20$

Vol Reg LM7805ACT

Positive Voltage 
Regulator, 5 V, 1 A, 0 to 
125 degC, 3-Pin TO-220, 
RoHS, Tube U3 FAIR-TO-220-3 1 0.90$ 0.90$

Instr Amp LT1920

Single Channel, Resistor 
Gain Programmable, 
Precision Instrumentation 
Operational Amplifier, 
0.8 MHz Typical GBW, 
1.2 V/us Typical SR, 4.6 to 
40 V, 8-Pin SOIC (S8-8), 
Commercial, Pb-Free

U4_Amp1, 
U4_Amp2 LT-S8-8_L 2 6.28$ 12.56$

Op Amp NE5532ADR

Dual Low-Noise 
Operational Amplifier, 10 
to 30 V, 0 to 70 degC, 8-
pin SOIC (D8), Green 
(RoHS & no Sb/Br) U5 D0008A_M 1 0.00$

Vol Reg LM7905CT/NOPB

3-Terminal Negative 
Regulator, 3-pin TO-220, 
Pb-Free U6 NDE0003A 1 1.63$ 1.63$

USB-UART FT232RL-Reel

USB UART Asynchronous 
Serial Data Transfer Chip, 
28-pin SSOP, Tape and 
Reel U7 SSOP-28_L 1 4.50$ 4.50$

Crystal ABLS2-16.000
MHZ-D4Y-T

Low Profile Surface 
Mount Microprocessor 
Crystal, 16.000 MHz +/-
30 ppm, 180 Ohm, -40 
to 85 degC, 2-Pin 11.4 x 
4.7 x 3.3 mm SMD, RoHS, 
Tape and Reel X1 ABRA-ABLS2-2_V 1 0.46$ 0.46$

Micro USB 10118192-0001LF

Micro USB B Type 
Receptacle, -55 to 85 
degC, 5-Pin SMD, RoHS, 
Tape and Reel J1 FCI-10118192-0001LF-5_V 1 0.46$ 0.46$

Header 3 Header, 3-Pin P1, P3 HDR1X3 2 0.13$ 0.26$

SG header

Male Header, Pitch 2.54 
mm, 1 x 4 Position, Height 
14.199 mm, Tail Length 
3.302 mm, -55 to 105 
degC, RoHS, Rail/Tube

P2_Amp1, 
P2_Amp2 TECO-5-103414-2_V 2 1.57$ 3.14$

Header 5 Header, 5-Pin P5 HDR1X5 1 0.25$ 0.25$

Header 3X2 Header, 3-Pin, Dual row P6 HDR2X3 1 0.24$ 0.24$

Pwr supply

7.5V 7.5W AC/DC 
External Wall Mount 
Adapter Fixed Blade 
Input 237-2215-ND 2 10.52$ 21.04$

LED 150060RS75000
SMD mono-color Chip 
LED, WL-SMCW, Red 5V, D1, RX1, TX1 0603_A 4 0.14$ 0.56$

PCB
Manufactured at 
Advanced Circuits 1 66$ 66$

Total 141.95$

Figure 4.11: PCB Materials Bill (2)
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Comment Description Quantity Unit Price Total Price

Strain gauges and applicaiton materials

M-Bond 200 Adhesive 1 88.44$ 88.44$

MCA-1, M-Prep Conditioner A, 2 oz (60 ml) bottle 1 19.36$ 19.36$

MN5A-1, M-Prep Neutralizer 5A 2 oz (60 ml) bottle 1 19.36$ 19.36$

GSP-1, gauze sponges, 1 package 3 in x 3 in 1 5.79$ 5.79$

Solvent Degreaser CSM-2 1 20.00$ 20.00$

M-Bond 200 Catalyst-C 1 13.71$ 13.71$

Polyurethane 1 11.98$ 11.98$

Isopropyl 70% Alcohol 1 2.00$ 2.00$

Glass 150x150 mm 1 0.00$ 0.00$

Tape 1 1.00$ 1.00$

Strain gagues with pads 9SIA67055T3138

SODIAL 5 x BF350-3AA 350O High-
Precision Resistive Pressure 
Resistance Steel Strain Gauge (5 in 
package) 12 1.06$ 12.72$

Mechanical Design

Ball Bearings 6655K17
Thrust Ball Bearing for 1/2" Shaft 
Diameter, 15/16" OD, 0.249" Thick 2 2.80$ 5.60$

Aluminum Rod 1610T13        6061 Aluminum, 1 1/2" Diameter, 1/2 
Feet Long 1 2.57$ 2.57$

Aluminum Rod 8974K11
6061 Aluminum, 3/4" Diameter, 1/2 
Feet Long 1 3.17$ 3.17$

Set Screws 92949A050

18-8 Stainless Steel Button Head Hex 
Drive Screw, 0-80 Thread Size, 1/8" 
Long, Packs of 100 1 5.19$ 5.19$

Spring 9654K411

Steel Extension Spring with Loop 
Ends, Music-Wire, 2.5" Long, 0.188" 
OD, 0.025" Wire, Packs of 12 1 8.88$ 8.88$

Total 219.77$

Figure 4.12: Mechanical and Strain Gauge Materials Bill
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